Improving phonotactic language recognition with acoustic adaptation
نویسندگان
چکیده
In recent evaluations of automatic language recognition systems, phonotactic approaches have proven highly effective [1][2]. However, as most of these systems rely on underlying ASR techniques to derive a phonetic tokenization, these techniques are potentially susceptible to acoustic variability from non-language sources (i.e. gender, speaker, channel, etc.). In this paper we apply techniques fromASR research to normalize and adapt HMM-based phonetic models to improve phonotactic language recognition performance. Experiments we conducted with these techniques show an EER reduction of 29% over traditional PRLM-based approaches.
منابع مشابه
Parallel Acoustic Model Adaptation for Improving Phonotactic Language Recognition
In phonotactic language recognition systems, the use of acoustic model adaptation prior to phone lattice decoding has been proposed to deal with the mismatch between training and test conditions. In this paper, a novel approach using diversified phonotactic features from parallel acoustic model adaptation is proposed. Specifically, the parallel model adaptation involves independent mean-only an...
متن کاملBUT language recognition system for NIST 2007 evaluations
This paper describes Brno University of Technology (BUT) system for 2007 NIST Language recognition (LRE) evaluation. The system is a fusion of 4 acoustic and 9 phonotactic subsystems. We have investigated several new topics such as discriminatively trained language models in phonotactic systems, and eigen-channel adaptation in model and feature domain in acoustic systems. We also point out the ...
متن کاملImproving Language Recognition with Multilingual Phone Recognition and Speaker Adaptation Transforms
We investigate a variety of methods for improving language recognition accuracy based on techniques in speech recognition, and in some cases borrowed from speaker recognition. First, we look at the question of language-dependent versus language-independent phone recognition for phonotactic (PRLM) language recognizers, and find that language-independent recognizers give superior performance in b...
متن کاملTowards High Performance Phonotactic Feature for Spoken Language Recognition
With the demands of globalization, multilingual speech is increasingly common in conversational telephone speech, broadcast news and internet podcasts. Therefore, automatic spoken language recognition has become an important technology in multilingual speech related applications. For example, automatic spoken language recognition has been used as a preprocessing component for spoken language tr...
متن کاملHomogenous ensemble phonotactic language recognition based on SVM supervector reconstruction
Currently, acoustic spoken language recognition (SLR) and phonotactic SLR systems are widely used language recognition systems. To achieve better performance, researchers combine multiple subsystems with the results often much better than a single SLR system. Phonotactic SLR subsystems may vary in the acoustic features vectors or include multiple language-specific phone recognizers and differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007